Artificial

Exploring Self-distillation based Relational Reasoning Training for Document-Level Relation Extraction

Liang Zhang^{1,2}, Jinsong Su^{1,2*}, Zijun Min^{1,2}, Zhongjian Miao^{1,2}, Qingguo Hu^{1,2} Biao Fu^{1,2}, Xiaodong Shi^{1,2}, Yidong Chen^{1,2*}

¹School of Informatics, Xiamen University, China
²Key Laboratory of Digital Protection and Intelligent Processing of Intangible Cultural Heritage of Fujian and Taiwan (Xiamen University), Ministry of Culture and Tourism, China lzhang@stu.xmu.edu.cn, {jssu,ydchen}@xmu.edu.cn

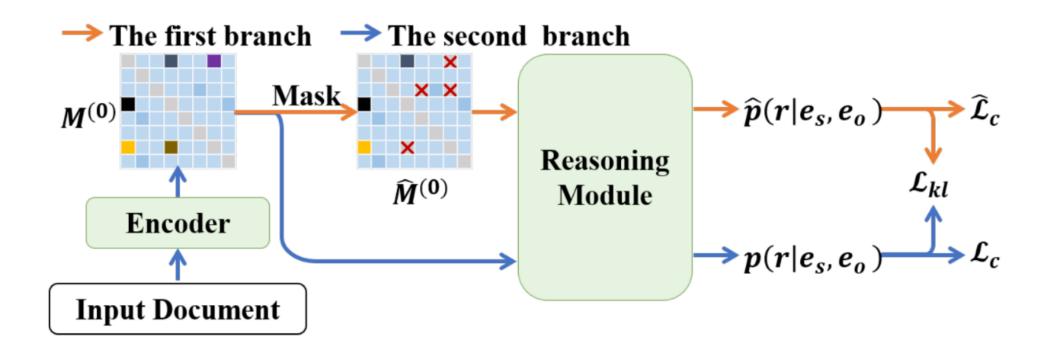
Code:https://github.com/DeepLearnXMU/DocRE-SD

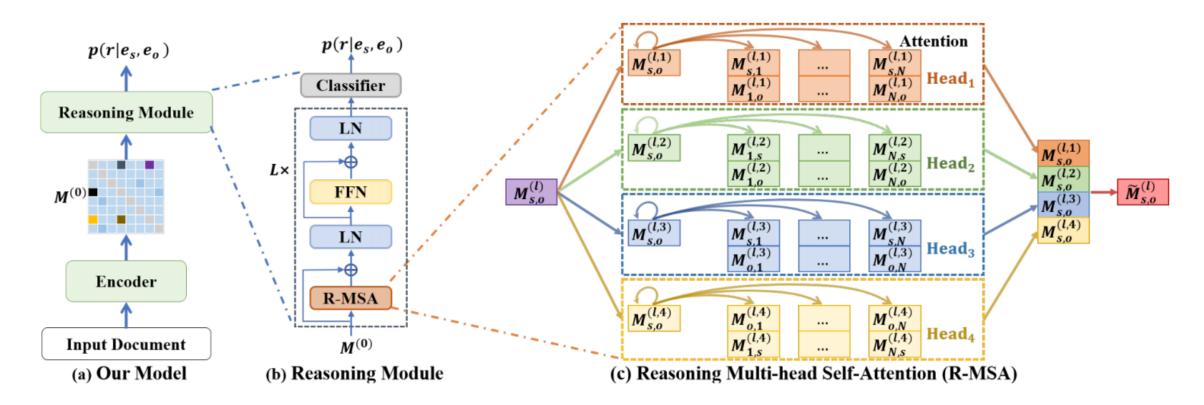
2023.11.2 • ChongQing

- 1.Introduction
- 2.Overview
- 3.Methods
- 4. Experiments

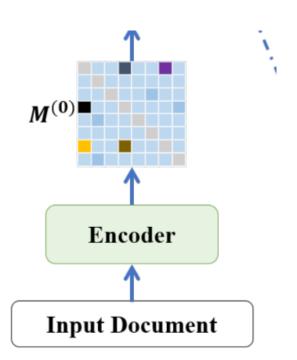
Introduction

Input document:

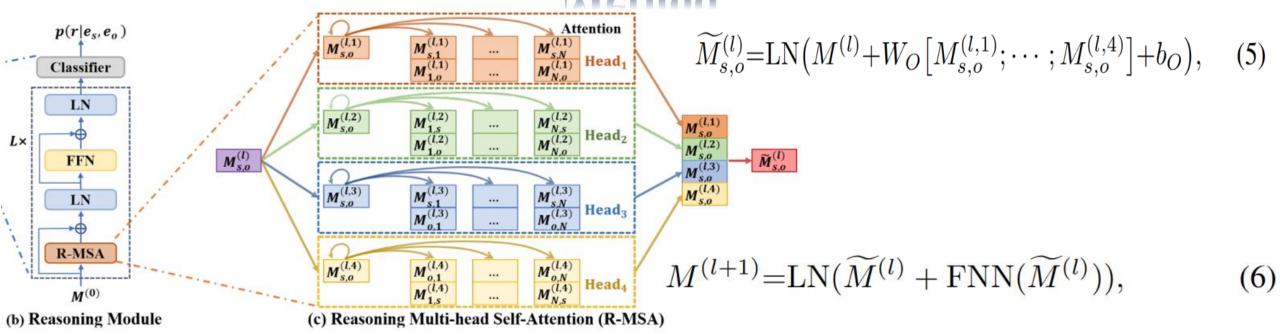

- [0] "Paper Hearts" is the tenth episode of the fourth season of the American science fiction television series The X-Files. ...
- [2] It was written by Vince Gilligan, directed by Rob Bowman, and featured guest appearances by Tom Noonan,
- [5] The show centers on FBI special agents **Fox Mulder** and Dana Scully, who work on cases linked to the paranormal, called **X-Files**. ...
- [7] In this episode, **Mulder** and Scully find that a child killer who **Mulder** had helped to apprehend several years earlier had claimed more victims than he had confessed to; ..., learn that the killer is now claiming to have killed **Mulder**'s sister **Samantha**. ...


Reasoning patterns: (1) $[(e_s, r_1, e_i), (e_i, r_2, e_o)] \Rightarrow (e_s, r_3, e_o)$ (2) $[(e_s, r_1, e_i), (e_i, r_2, e_o)] \Rightarrow (e_s, r_3, e_o)$ Relational triples: (X-Files, characters, Mulder) (1) \checkmark (X-Files, characters, Samantha) (Mulder, sibling, Samantha) (Paper Hearts, series, X-Files) (1) \times (X-Files, director, Rob Bowman)

(Paper Hearts, director, Rob Bowman) (2)


Reasoning Pattern	Example	Rate
$(1) [(e_s, r_1, e_i), (e_i, r_2, e_o)] \Rightarrow (e_s, r_3, e_o)$	[(Bob, father, Danny), (Danny, spouse, Anna)]⇒(Bob, mother, Anna)	24.83%
$(2) [(e_i, r_1, e_s), (e_i, r_2, e_o)] \Rightarrow (e_s, r_3, e_o)$	[(Bob, brother, Harry), (Bob, father, Danny)]⇒(Harry, father, Danny)	19.28%
(3) $[(e_s, r_1, e_i), (e_o, r_2, e_i)] \Rightarrow (e_s, r_3, e_o)$	[(Bob, father, Danny), (Harry, father, Danny)]⇒(Bob, brother, Harry)	24.69%
$(4) [(e_o, r_1, e_i), (e_i, r_2, e_s)] \Rightarrow (e_s, r_3, e_o)$	[(Bob, mother, Anna), (Anna, spouse, Danny)]⇒(Danny, child, Bob)	7.70%

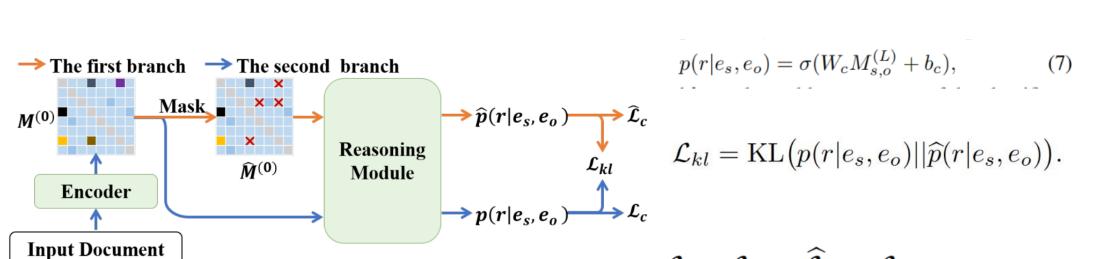
Overview


$$h(e_i) = \log \sum_{j=1}^{N_{e_i}} \exp(h(m_j^i))$$

$$F_{s,o} = \text{FNN}(\left[\tanh(W_s[h(e_s); c_{s,o}]); \tanh(W_o[h(e_o); c_{s,o}])\right), \tag{1}$$

 $\mathbf{H} = [h_1, h_2, ..., h_{|D|}]$

$$c_{s,o} = \mathbf{H}^{\mathsf{T}} \frac{A_s \circ A_o}{\mathbf{1}^{\mathsf{T}} (A_s \circ A_o)},$$


$$M^{(0)} = [F_{s,o}]_{N \times N}$$
(2)

$$F_i^{(l,1)} = W_d[M_{s,i}^{(l)}; M_{i,o}^{(l)}] + b_d, \quad i = \{1, 2, \dots, N\}, \quad (3)$$

$$M_{s,o}^{(l,1)} = \text{Attention}(Q, K, V),$$

where $Q = M_{s,o}^{(l)}, K = V = [M_{s,o}^{(l)}; F_1^{(l,1)}; \cdots; F_N^{(l,1)}].$ (4)

$$p(r|e_s, e_o) = \sigma(W_c M_{s,o}^{(L)} + b_c),$$
 (7)

$$\mathcal{L}_{kl} = \mathrm{KL}(p(r|e_s, e_o)||\widehat{p}(r|e_s, e_o)). \tag{8}$$

$$\mathcal{L} = \mathcal{L}_c + \widehat{\mathcal{L}}_c + \mathcal{L}_{kl}. \tag{9}$$

$$\mathcal{L}_{c} = -\left(\sum_{r \in \mathcal{R}_{pos}} \log\left(\frac{\exp(\operatorname{logit}_{r})}{\sum_{r' \in \{\mathcal{R}_{pos}, \operatorname{TH}\}} \exp(\operatorname{logit}_{r'})}\right)\right)$$

$$-\log\left(\frac{\exp(\operatorname{logit}_{\operatorname{TH}})}{\sum_{r' \in \{\mathcal{R}_{neg}, \operatorname{TH}\}} \exp(\operatorname{logit}_{r'})}\right). \tag{10}$$

Model	Dev				Test		
	${\sf Ign}F_1$	F_1	Intra- F_1	Inter- F_1	Infer-Ac	$IgnF_1$	F_1
GEDA-BERT (Li et al. 2020)†	54.52	56.16	_	_	_	53.71	55.74
LSR-BERT (Nan et al. 2020)†	52.43	59.00	65.26	52.05	_	56.97	59.05
GLRE-BERT (Wang et al. 2020)†	_	_	_	_	_	55.40	57.40
GAIN-BERT (Zeng et al. 2020)†	59.14	61.22	67.10	53.90	58.42*	59.00	61.24
HeterGSAN-BERT (Xu et al. 2021)†	58.13	60.18	_	_	_	57.12	59.45
SSAN-BERT (Xu et al. 2021)†	56.68	58.95	_	_	_	56.06	58.41
BERT-base (Wang et al. 2019)†	_	54.16	61.61	47.15	_	_	53.20
BERT-TS (Wang et al. 2019)†	_	54.42	61.80	47.28	_	_	53.92
HIN-BERT (Tang et al. 2020)†	54.29	56.31	_	_	_	53.70	55.60
CorefBERT (Ye et al. 2020)†	55.32	57.51	_	_	_	54.54	56.96
ATLOP-BERT (Zhou et al. 2021)†	59.22	61.09	_	_	58.29*	59.31	61.30
DocuNet-BERT (Zhang et al. 2021)†	59.86	61.83	_	_	_	59.93	61.86
SIRE-BERT (Zeng et al. 2021)†	59.82	61.60	68.07	54.01	_	60.18	62.05
KD-BERT (Tan et al. 2022)†	60.08	62.03	_	_	58.93*	60.04	62.08
Ours-BERT(SD→KD)	59.83	61.76	68.12	54.09	59.31	59.94	61.81
Ours-BERT(SD \rightarrow R-Drop)	60.12	61.92	68.39	54.92	59.74	60.11	62.03
Ours-BERT	$60.85 {\pm} 0.10$	62.81 ± 0.13	68.67 ± 0.11	56.09 ± 0.21	61.08 ± 0.18	60.91	62.85

Table 2: Experimental results on the development and test sets of DocRED. We report the mean and standard deviation on the development set by conducting five experiments with different random seeds. Besides, we report the official test scores of the best checkpoint on the development set. \dagger indicates original paper scores. Results with * are obtained by our reproduction. KD denotes the vanilla knowledge distillation and SD means our self-distillation training framework. SD \rightarrow KD (SD \rightarrow R-Drop) means to replace our SD with KD (R-Drop).

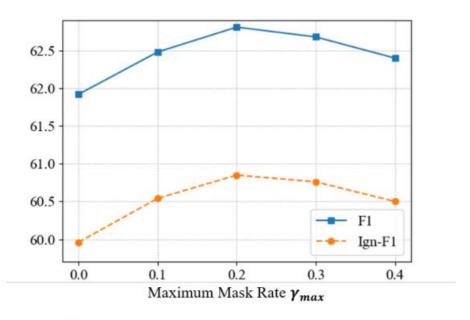


Figure 4: The performance of our model with different maximum mask rates γ_{max} on the development set of DocRED.

Model	CDR	GDA
BRAN (Verga et al. 2018)	62.1	_
EoG (Christopoulou et al. 2019)	63.6	81.5
LSR (Nan et al. 2020)	64.8	82.2
DHG (Zhang et al. 2020)	65.9	83.1
GLRE (Wang et al. 2020)	68.5	_
SciBERT (Beltagy, Lo, and Cohan 2019)	65.1	82.5
ATLOP-SciBERT (Zhou et al. 2021)	69.4	83.9
DocuNet-SciBERT(Zhang et al. 2021)	76.3	85.3
Ours-SciBERT	76.8	86.4

Table 3: The F_1 scores on the CDR and GDA test sets.

Model	${\rm Ign}F_1$	F_1
Ours-BERT	60.85	62.81
w/ R-MSA→MSA w/ Only the first reasoning pattern w/o The first branch w/o The second branch w/o Curriculum Learning	57.45 60.25 59.58 60.46 60.61	59.39 62.16 61.53 62.38 62.56

Table 4: Ablation study of our model on the development set of DocRED.

Model	Infer- F_1	P	R
GAIN-GloVe	40.82	32.76	54.14
SIRE-GloVe	42.72	34.83	55.22
BERT-RE	39.62	34.12	47.23
GAIN-BERT	46.89	38.71	59.45
Ours-BERT w/o The first branch w/o Reasoning module	50.11 47.92 46.62	42.99 40.03 38.42	60.05 59.68 59.29

Table 5: Infer- F_1 scores on the development set of DocRED.

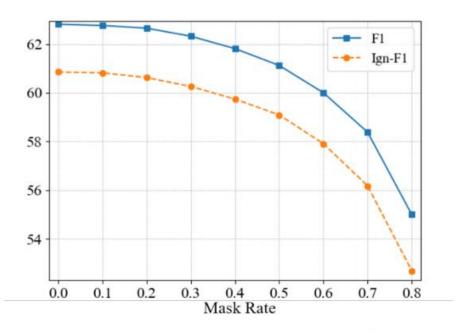


Figure 5: The performance of our model with different mask rates during testing on the development set of DocRED.

Thanks!